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Abstract. An autonomous robot which is equipped with sensorimotor loops and
situated within a specific environment can be regarded as a dynamical system. By
using Attractor-Based Behavior Control (ABC), the attractors of this dynamical
system correspond to energy-efficient behavioral body postures, and the attractor-
connecting heteroclinic orbits can be utilized to generate stable motion trajectories.
We introduce ABC-Learning and demonstrate how it enables an autonomous robot
to self-explore its behavioral capabilities from scratch and without any given body
model.
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1. Introduction

Infants who explore the motion of their own body and, later in development, peculiari-
ties of their environment are always very fascinating to watch. Although research on the
foundations of learning has made tremendous progress within the last decades, scenarios
like the aforementioned have hardly been seen with autonomous robots. In the paper at
hand, we propose a framework which may help to tackle this challenge on the ground
of nonlinear dynamical systems, following the well-known pattern of [1], but taking the
perspective of perceptual control theory [2] and a modern model of adaptive systems that
respects Ashby’s approach [3]. This immediately leads to the study of sensorimotor man-
ifolds. Only for the most simple systems can they be described analytically. Sensorimotor
manifolds of real robots mostly need to be extracted numerically [4].

If a robot is supposed to actively self-explore its behavioral manifolds some kind
of heuristic or motivational system is needed. Many different approaches have been pro-
posed, e.g., using sensorimotor loops which are driven close to bifurcation [5], using in-
trinsic motivations [6], or using extensions of self-organizing maps [7]. All those mecha-
nisms generate manifold-representing structures which in fact are behavioral memories.
Since they grow rapidly they have to be transformed into more abstract and compressed
representations. Promising approaches, e.g., are based on quadrics [8], or more general
on manifold retractions using the theory of lie-groups [9]. Surely, blind data compression
is a dead end to autonomous learning – semantic information has to be extracted concur-
rently and sensorimotor loops continuously have to be adapted during this process, even
under varying environmental context [10].



Regarding the control of autonomous robots, biologically inspired approaches may
be most attractive to achieve ’natural’ behaviors [11]. One also has to guarantee smooth
motion behavior and therefore the adaptive compensation of the actuators’ nonlinearities
has to be taken care of. Partial results exist for the compensation of backlash [12] and
friction [13], but approaches which are fully integrated into a ’whole systems’ framework
for self-exploration are still to be investigated. Recent results [14] may be used, but
existing theoretical findings [15] may also be adopted and tested on real robots. The
presented framework in this paper builds upon existing work in the fields of motion
control [16], neural dynamical systems [17], and adaptive systems [18]. We advance
current results which address the improvement of dynamic behaviors [19], the extraction
of sensorimotor manifolds [20], and use of heuristics for the exploration of the self and
its environment [21].

The rest of the paper is organized as follows. We first define dynamical systems
and recap the general terminology using a minimalist, abstract example. Then, we will
introduce a promising new sensorimotor control paradigm, the so-called Attractor-Based
Behavior Control (ABC), which is able to generate robust behavioral sequences. This will
be demonstrated by results of an experiment with a real robot leg. After that, we propose a
learning heuristic called ABC-Learning which is able to systematically extract behavioral
manifolds. Again, a real robot example is given. Finally, we discuss the implications of
the presented new framework and give an outlook over future research.

2. Autonomous Robots as Dynamical Systems

A dynamical system S describes the evolution of a state x(t) ∈ R
n over time t. Gener-

ally, the state is just a point in n-dimensional space, and the set of all possible states of
S is a manifold M ⊂ R

n called the phase space. Time is continuous if physical systems
are considered, but since we will deal with robots that use sampled sensorimotor values
we restrict ourselves to discrete-time systems, i.e., t ∈ N.

2.1. An Abstract Example

Consider the minimalist system of two fully recurrently connected neurons defined as
follows:

x(t+ 1) = F (x(t)), F (x) = tanh (Wx+ bp) , (1)

where t is the discrete time step, x the output of both neurons, i.e. the system state,

W =

(
1.06 0.02
−0.01 1.05

)
(2)

is the weight matrix, and

bp =

(
p
0

)
(3)

a parameterized bias term. Since the hyperbolic tangent is bounded by (−1,+1), it is
possible to draw the phase space within a two-dimensional square, as can be seen in



Figure 1. Phase space of a parameterized, fully recurrent neural network of Eq. (1). The left picture shows the
phase space for p = −0.01, and the right picture for p = 0. Different gray areas denote different basins, each
of which exhibits a stable fixed point (big white dots). Unstable fixed points exist on the boundaries between
basins (small white spots). The black curves denote nullclines which connect stable and unstable fixed points.

Figure 1 for the parameter values p = −0.01 and p = 0. When analyzing a dynamical
system, one is interested in the long-term behavior of x(t) for t → ∞. Starting with a
specific state x(0) = x0 at time t = 0, the transients will fade away after some time, and
the system finally settles down into an F -invariant subset A ⊂ M of the phase space, i.e.
F (A) = A.

2.2. Fixed Points, Attractors, Basins, and Bifurcations

The F -invariant subset A ⊂ M of the phase space towards which a dynamical system
evolves over time is called attractor. That is, points that get close enough to the attractor
remain close even if slightly disturbed. The set of all system states which end up in the
same attractor A is called the basin BA of A. As can be seen in Figure 1, our system
exhibits three basins for p = −0.01. In each basin there is a fixed point attractor. Geo-
metrically, an attractor can be a point, a curve, a manifold, or even a complicated fractal
set, but for the rest of the paper fixed points are of special interest.

Only stable fixed points are attractors. Unstable fixed points exist on the boundaries
between adjacent basins, the so-called separatrices. Those fixed points are hyperbolic in
the sense that the system state is attracted to them along the separatrices, but repelled
from them in the direction of the stable fixed points. A family of nullclines connects
stable and unstable fixed points. Traveling along nullclines is advantageous since always
only one dimension needs to be controlled actively.

If the parameter p is varied slowly from −0.01 to 0, then the separatrices and attrac-
tors are continuously moving. At some value p = p0 one attractor suddenly disappears
completely. This is called a bifurcation and p0 a bifurcation point. If a system has more
than one parameter, then the set of all bifurcation points can be a complex manifold in
parameter space.

2.3. Robots Situated in an Environment

We now transfer the presented concepts to embodied robots which are equipped with
sensorimotor loops and situated within a specific environment. The dynamical system
under investigation not only consists of the robot’s actuated body, but also the internal
states of the control loops as well as the interaction of the robot with the environment
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Figure 2. The autonomous robot SEMNI is 30cm tall and exhibits two degrees of freedom, namely the rotatory
joints at the hip (h) and at the knee (k). The angles between body and hip (ϕh), hip and knee (ϕk), and the
robot’s main body axis and the ground (ϕb) define a two-dimensional manifold M ⊂ R3 under the constraint
that the robot rests on the ground. The part of M marked with (s) corresponds to postures where the robot is
standing upright, as shown. Lying on the front (f ) and lying on the rear (r) are identified likewise.

have to be taken into account. Figure 2 shows the autonomous robot SEMNI. If the robot
rests on the ground and the internal control loops keep the joint angles constant, then the
state vector x := (ϕh, ϕk, ϕb) settles into an attractor, namely a stable fixed point. The
set of all fixed point attractors carves a two-dimensional manifold M out of the three-
dimensional phase space. As long as the robot moves slowly, i.e. dx/dt ≈ 0, we can
say which postures can be reached, and where bifurcations take place, i.e. x falls off the
manifold M and reenters M at another point. In that case the robot falls down and is
exposed to physical impacts. Figure 3 shows a diagonal cut through M in more detail.
Dashed lines indicate where bifurcations take place. As can be seen, posture i cannot be
reached by only using slow moves, since the robot will end up at posture e instead.
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Figure 3. Diagonal cut (ϕh = ϕk) through the manifold M of Figure 2. For each body configuration two
or three different orientations coexist relative to the ground. Some postures (d, j, k) need significant holding
torques, whereas others (a, e, h, i) cost no energy. All angles are in radiant. They are all zero at posture c.



3. Attractor-Based Behavior Control (ABC)

Having dealt with robot postures, we will now study controlled behaviors and introduce
a sensorimotor loop which enables us to actively stabilize unstable fixed points, even if
they are drifting over time. This allows us to travel along the nullclines of behavioral
manifolds, so we let the robot’s body physics do the work whenever possible, only using
energy when necessary. We call this approach Attractor-Based Behavior Control (ABC).

3.1. Energy Efficiency and the Principle of Contraction and Release

One of the most essential mechanisms of living organisms is the principle of contraction
and release. From the locomotion of a jellyfish to the respiration of humans – everything
relies on contraction-pulsations and in-between phases of release. Talking about dynam-
ical systems, the contraction corresponds to quick passages from one fixed point to an-
other. After each transient motion, the system is kept in the next fixed point, either fully
released, or in a stabilizing mode, but always using only little energy.

3.2. One Cognitive Sensorimotor Loop (CSL) per Joint

The main idea of the well-known center manifold theorem is that the dynamics of a
system can be governed by the evolution of a few critical dimensions, while the system
follows along the other dimensions in a passive fashion. Regarding autonomous robots,
this enables us to use one sensorimotor loop per actuated joint, and to run those either
in contraction or release mode. Referring to the left diagram of Figure 4, the contraction
mode would drive the system uphill to P3 or P4, whereas the release mode would let the
system fall back onto one of the other points, depending on the system’s starting state.

Even the most simple sensorimotor loop can possess cognitive abilities. A well-
proven control structure is the one shown in Figure 4, to which we from now on refer to
as Cognitive Sensorimotor Loop (CSL). It just uses the joint angleϕ as input, and outputs
the actuator’s driving voltage u. Actually, not even the absolute angle is needed. As the
left half of the CSL, comprising the input paths (−g i, gi) and the unit delay (z−1), forms
a differentiator with input gain gi, it is sufficient to fed a velocity signal into the CSL
and remove the lower pathway (g i). As a consequence, there is no need for calibrated,
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Figure 4. Considering the center manifold theorem enables us to explore the behavioral manifold by always
varying one dimension only. The left picture shows the general situation along an arbitrary component xk
of the phase space. The uncontrolled system evolves according to Δxk = −dI/dxk . It does not cost much
energy to stay at the points P1 . . . P6. Using the principle of contraction and release always leads to the next
such point. The picture to the right shows a Cognitive Sensorimotor Loop (CSL) which enables the required
control paradigm as a function of the three-dimensional parameter vector (gi, gf , u0).



absolute sensor values when using CSLs. The right half of the CSL can either function
as leaky integrator, ideal integrator, or integrator with additional feedback, depending on
the parameter gf . Finally, u0 is a biasing motor signal which can be used to induce a
static body tension. If input and output values are standardized, so that ϕ, u ∈ [−1, 1],
then the parameter vector lies within the range (g i, gf , u0) ∈ [0, 2]× [0, 2]× [−1, 1]. In
the following section we will see in which way the CSL can be considered cognitive.

3.3. How a Single Leg Stands Up Using Attractor-Based Behavior Control

To demonstrate the power of ABC, we conducted an experiment with a single leg
from the modular humanoid robot MYON, as shown in Figure 5. The leg possesses
three actuated degrees of freedom, namely the rotary joints at the hip, knee, and ankle.
Each joint was equipped with its own local CSL. We used the same parameter vector
(gi, gf , u0) = vc for all three CSLs, where vc := (0.9, 1.1, 0.0). This is a contracting
CSL, the behavior of which has been described abstractly in the previous section. On
the robot leg a complex behavioral sequence emerges, as shown in Figure 5. First, only
ankle, knee, and the mass touch the ground, so the hip experiences load and starts to
contract (1-2). This lifts the knee from the ground, so the knee also starts to contract
(3). At some point the leg tilts over onto toe and heel, so that the mass is in the air (4).
This makes the knee joint turn its rotational direction, it now works against the earth’s
gravitation (5). The other joints are equally well balancing out the forces, so the leg ends
up in a fully upright position (6-7) and defies external disturbances of any kind.
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Figure 5. This single leg of the robot MYON is able to stand up using the proposed ABC paradigm. Each
of the three joints is locally controlled by a contracting CSL (vc). No sensory data is needed other than the
three joint velocities – actually not even absolute joint angles are necessary, so sensor calibration is obsolete
for ABC-driven robots. Furthermore, no communication takes place between the joints. The complex stand up
behavior solely emerges due to the interaction between the CSLs, the leg’s mechanical properties, the ground,
and the earth’s gravitational force. Once stood up, the leg stays in an upright position even if the ground is
tilted, external forces are applied, or the mass distribution on top of the leg is altered.



4. Exploring Sensorimotor Manifolds Using ABC-Learning

The stand-up motion of a single robot leg is a complex behavioral sequence. At different
time points some joints start moving, slow down again, or even turn their rotational
direction. Distinct motional episodes take place, and to the naive observer this looks
like action sequences which are intentionally selected. For most existing robots this may
indeed be the case. But here quite the contrary is true: the underlying ABC mechanism
has no such concepts as, e.g., action or action selection. We will now go one step further
and see where we get by actively switching between contraction and release modes.

4.1. Boredom and Pain: Recognizing Unpleasant States

We first have to decide, when and why to switch the CSL mode. There are three condi-
tions which immediately come to mind. First, if the robot reaches a steady state, where
nothing more happens than slight motions, it should try to explore something new. This
can be recognized easily by checking the internal states of all CSLs are almost zero for
some time. Second, if the robot touches itself while in contraction mode, then some CSLs
will increase their output signal beyond all limits. This is harmful for the robot, since
the motors will heat up quickly and burn out, if no countermeasure is initiated. Fortu-
nately, this stall situation can also be detected easily by checking if at least one of the
CSLs grows out of bounds. If current measurements are available as sensory inputs, then
monitoring them would make an even more appropriate stall detector. Third, as already
shown in Figure 3, there exist bifurcations where the robot falls off the manifold – no
help whatever cautious motion the robot will make. There is no immediate remedy to
this situation, because there will always be a physical impact to the robot’s body in first
place. Surely, fully fledged ABC-Learning includes the memorization of such events in
order to prevent the same situation next time, but here, we will only deal with the first
two situations. If one of the conditions is fulfilled, then a trigger signal will be activated.

4.2. Switching the CSLs Between Contraction and Release Modes

As already explained, we can explore a sensorimotor manifold by just changing the mode
of one CSL after the other. So, we restrict ourselves to a single dimension and assume
that the system rests in a stabilized fixed point using a CSL in contraction mode. Refer-
ring to Figure 4, let us say that we are somewhere betweenP3 and P4. Now, there are two
possible directions to go, in order to reach the next stable fixed point, namely towards
P2 or P5. An analogous situation arises when we are, e.g., between P1 and P2. So, it
would be ambiguous if we only had two CSL modes, a contraction and a release mode.
We somehow have to actively break the symmetry, or random forces from the environ-
ment will take over control. The most simple arrangement to do so, is to use two slightly
oppositely biased release modes instead of one. For the experiment that we will describe
subsequently, we used the following CSL modes (which are fully defined by their param-
eter vectors): v+

r := (0.0, 0.0, 0.1), v−
r := (0.0, 0.0,−0.1), and vc := (0.9, 1.1, 0.0), as

defined before. For a given set of CSL modes (here: {v+
r ,v

−
r ,vc}), we are now able to

define a finite state machine which directs the mode switching of the CSLs dependent on
a given direction, as shown on the left hand side of Figure 6. Each time a trigger signal
is activated, we randomly choose one of the CSLs and a random direction (+ or −), and
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Figure 6. Two finite state machines used for ABC-Learning. Due to the nature of the nullclines, there are only
two possible directions (+ and −) per motor dimension to leave a current fixed point. For a given set of CSL
modes, the state machine defines in which order they have to be switched to continue traveling into the same
direction. The left state machine is the most minimal. Each state will lead the system into a fixed point. The
right state machine is an expanded version of the left one, where two additional states with maximal energy
consumption (v+h and v−h ) are included. Those always lie in-between a stable and an unstable fixed point.

update the parameter vector of the chosen CSL according to the finite state machine.
There are by far wiser mechanisms in ABC-Learning than just using random decisions,
but we will not go into more detail here, since random decisions are already sufficient to
fully explore the sensorimotor manifold of a simple robot in short time.

4.3. Self-Exploration of a Robot’s Sensorimotor Manifold

Being equipped with the ground truth of the robot SEMNI’s sensorimotor manifold, as
shown in Figures 2 and 3, we tested ABC-Learning on the real robot, using the aforemen-
tioned CSLs, the minimalist set of three CSL modes {v+

r ,v
−
r ,vc}, the corresponding fi-

nite state machine (see left hand side of Figure 6), the recognition mechanism for resting
states and stall situations, and a random decision heuristic. ABC-Learning started from
scratch with the robot placed on the ground in posture c, i.e. lying on its front (see Figure
3). The results after a ten minute run are shown in Figure 7. Over 90% of all possible
low-energy postures (30 out of 33) have been found by ABC-Learning. This is insofar
impressive as the algorithm is computationally simple and not even optimized regarding
the decision heuristic. Note, that there are no parameters that need to be fine-tuned. The
exact values of the CSL mode vectors are not critical – the same values can be used for
a lightweight robot of 30cm height and for a 125cm tall humanoid robot alike. In addi-
tion to the found postures, the algorithm also builds up a directed graph of optimal (in
the sense of energy efficient) motion behaviors to get from one posture to another. We
finally bring to mind that, as long as the current basin of attraction is not forcibly left, all
postures and motion behaviors are invariant with respect to ground friction, mechanical
wear-out, environmental disturbances, and the like.

5. Discussion and Outlook

To sum up, we have presented a novel framework for the self-exploration of a robot’s sen-
sorimotor manifold, called ABC-Learning, which consists of several components. The
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Figure 7. Results of the ABC-Learning experiment with the robot SEMNI. Black dots denote postures, while
gray traces show the transient motions in-between. Postures and traces lie within the two-dimensional manifold
M shown in Figure 2. Since M is embedded in R3, it has been cut into four sets along the third dimension
ϕb, which corresponds to the robot’s orientation relative to the ground. (f), (s), (r), and (h) denote orientations
where the robot is lying on its front, standing upright, lying on its back, being in a handstand-like position,
respectively. The four letters correspond to those in Figure 2. The diagonal cut through M which is shown in
Figure 3 is indicated as black line here. The labeled circles identify the same body configurations and postures
as in Figure 3. As can be seen, all of the energy efficient postures (a, e, h) have been found by ABC-Learning.
We used each one CSL for hip and knee joint, and the minimal state machine of Figure 6. Posture i could not
be found because it is unreachable, as has already been pointed out. The shown part of M has been explored
from scratch during the first ten minutes and already includes almost all existing postures.

essential part is what we defined as Attractor-Based Behavior Control, namely using lo-
cal sensorimotor control loops which exhibit the cognitive ability to indirectly detect en-
vironmental forces and to either follow them or work against them. These so-called CSLs
come computationally at no cost, do not need absolute or even calibrated sensory input
data, and are set to different operational modes by means of a three-dimensional param-
eter vector, the value of which is uncritical. We presented experimental evidence for the
robust and efficient operation of stand-alone CSLs and the whole framework on different
robot platforms. The quality of ABC-Learning was benchmarked against ground truth
data. The basic ABC-Learning framework already exhibits advantages like the inher-
ent robustness against all kind of mechanical wear-outs and environmental disturbances,
the ability to start from scratch without prior parameter fine-tuning, and the sparse and
highly semantic coding of postures and motion behaviors. Interestingly, people immedi-
ately name the postures found by ABC-Learning with verbs like lying, sitting, standing,
kneeing, holding up, which seems plausible if we realize that, e.g., the verb sitting rep-
resents all variations of sitting, be it on a chair with the feet on the ground, or on a table
with dangling feet, but always the defining property being that hip and neck are held
upright (contraction mode), whereas knees and ankles are free to move (release mode).
The validity of this analogy becomes even more obvious, if we place the standing robot
leg controlled by CSLs beside a person and start to tilt the ground.

Future work will focus on robots with more joints. We believe that the curse of
dimensionality can be tamed using ABC-Learning, since the number of possible motion
behaviors only grows linearly with the number of joints! In parallel, we will investigate
additional CSLs which allow for increasingly dynamic motions.
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